Pachetul rust pentru libmdbx
Învelișul rust
pentru baza de date libmdbx.
Anuar :
Citate
În timp ce scriam "rmw.link ", am simțit că am nevoie de o bază de date încorporată.
Din cauza debitului de rețea implicat în înregistrarea, citirea și scrierea frecventă, sqlite3
era prea avansat pentru a răspunde la problemele de performanță.
Astfel, o bază de date de nivel inferior cu valori cheie era mai potrivită (lmdb este de 10 ori mai rapidă decât sqlite ).
În cele din urmă, am optat pentru versiunea magică a lmdb
- mdbx
.
În prezent, pachetul existent rust
al mdbx-rs (mdbx-sys) de la mdbx
nu suportă Windows, așa că am decis să împachetez o versiune cu suport pentru Windows.
Suport pentru stocarea tipurilor de rugină personalizate. Suportă accesul cu mai multe fire.
Baza de date poate fi definită într-un modul folosind lazy_static
și apoi poate fi introdusă și utilizată pur și simplu cu ceva de genul :
use db::User;
let id = 1234;
let user = r!(User.get id);
Ce este libmdbx?
mdbx este o bază de date secundară bazată pe lmdb, realizată de rusul Леонид Юрьев (Leonid Yuriev).
lmdb este o bază de date cu valori cheie încorporată super-rapidă.
Motorul de căutare full-text MeiliSearch se bazează pe lmdb.
Cadrul de învățare profundă caffe utilizează, de asemenea, lmdb ca depozit de date.
mdbx este cu 30% mai rapid decât lmdb în testul de performanță încorporat ioarena.
În același timp, mdbx îmbunătățește multe dintre deficiențele lui lmdb, astfel că Erigon (clientul ethereum de ultimă generație) a trecut recent de la LMDB la MDBX [1].
Tutoriale
Cum se execută exemplul
Mai întâi clonați baza de cod git clone git@github.com:rmw-lib/mdbx.git --depth=1 && cd mdbx
Apoi rulați cargo run --example 01
și va rula examples/01.rs
Dacă este vorba de propriul proiect, vă rugăm să îl rulați mai întâi:
cargo install cargo-edit
cargo add mdbx lazy_static ctor paste
set(key,val)
și citirea .get(key)
Exemplul 1 : Scrierea Să ne uităm la un exemplu simplu de exemplu/01.rs
Cod
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
Executați ieșirea
mdbx file path /Users/z/rmw/mdbx/target/debug/examples/01.mdb
mdbx version https://github.com/erthink/libmdbx/releases/tag/v0.11.2
test1 get Ok(Some(Bin([6])))
[6]
Cod descriere
env_rw!
Definirea bazei de date
Codul începe cu un macro env_rw, care are 4 parametri.
Numele variabilei de mediu al bazei de date
Returnează un obiect, mdbx::: env:: Config.
Utilizăm configurația implicită, deoarece Env
implementează From<Into<PathBuf>>
, astfel încât calea bazei de date into()
este suficientă, iar configurația implicită este următoarea.
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
max_db
Această setare poate fi resetată de fiecare dată când se deschide baza de date, dar o setare prea mare va afecta performanța; setați-o doar după cum este necesar.
Consultați documentația libmdbx pentru semnificația celorlalți parametri.
Numele macroului tranzacției de citire a bazei de date; valoarea implicită este
r
Numele macroului de tranzacție de scriere a bazei de date; valoarea implicită este
w
Parametrii 3 și 4 pot fi omisi pentru a utiliza valorile implicite.
Extinderea macro
Dacă doriți să vedeți ce face magia macro, puteți utiliza macro cargo expand --example 01
pentru a o extinde, care trebuie instalată mai întâi. cargo install cargo-expand
O captură de ecran a codului extins este prezentată mai jos.
oricum și lazy_static
Din captura de ecran extinsă, puteți vedea că sunt utilizate lazy_static
și anyhow
.
anyhow este biblioteca de tratare a erorilor pentru rust.
lazy_static este o variabilă statică cu inițializare întârziată.
Aceste două biblioteci sunt foarte comune și nu voi intra în discuție.
Macro mdbx!
mdbx!
este o macroprocedură.
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
Prima linie este numele variabilei de mediu al bazei de date
A doua linie este numele bazei de date
Pot exista mai multe baze de date, câte o linie pentru fiecare bază de date.
Fire și tranzacții
Codul de mai sus demonstrează citirea și scrierea cu mai multe fire.
Este important de reținut că nu poate exista decât o singură tranzacție în același fir de execuție la un moment dat; dacă un fir de execuție are mai mult de o tranzacție deschisă, programul se va bloca.
Tranzacția va fi angajată la sfârșitul domeniului de aplicare.
Citirea și scrierea datelor binare
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t:&[u8] = &val;
println!("{:?}",t);
},
None => unreachable!()
}
set
este o scriere, get
este o citire, iar orice obiect care implementează AsRef<[u8]>
poate fi scris în baza de date.
get
Ceea ce rezultă este Ok(Some(Bin([6])))
, care poate fi transformat în &[u8]
.
Exemplul 2: Tipuri de date, indicatori de baze de date, ștergere, traversare
Să ne uităm la al doilea exemplu/02.rs:
În acest exemplu, env_rw!
este omis, iar al treilea și al patrulea argument ( r
, w
) sunt omise.
Cod
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t:&[u8] = &val;
println!("{:?}",t);
},
None => unreachable!()
}
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX // Nume de variabile pentru baza de date ENV
Test1
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
}
fn main() -> Result<()> {
// Scrisoare rapidă
w!(Test1.set [2, 3],[4, 5]);
// Lectură rapidă
match r!(Test1.get [2, 3]) {
Some(r) => {
println!(
"\nu16::from_le_bytes({:?}) = {}",
r,
u16::from_le_bytes((*r).try_into()?)
);
}
None => unreachable!(),
}
// Operațiuni multiple pe mai multe baze de date în aceeași tranzacție
{
let tx = w!();
let test1 = tx | Test1;
test1.set(&[9], &[10, 12])?;
test1.set([8, 1], [9])?;
test1.set("rmw.link", "Down with Data Hegemony")?;
test1.set(&"abc", &"012")?;
println!("\n-- loop test1");
for (k, v) in test1 {
println!("{} = {}", k, v);
}
dbg!(test1.del_val([8, 1], [3])?);
dbg!(test1.get([8, 1])?.unwrap());
dbg!(test1.del_val([8, 1], [9])?);
dbg!(test1.get([8, 1])?);
dbg!(test1.del([9])?);
dbg!(test1.get([9])?);
dbg!(test1.del([9])?);
let test2 = tx | Test2;
test2.set("rmw.link", "Down with Data Hegemony")?;
test2.set(&"abc", &"012")?;
println!("\n-- loop test2");
for (k, v) in test2 {
println!("{} = {}", k, v);
}
let test3 = tx | Test3;
test3.set(13, 32)?;
test3.set(16, 32)?;
test3.set(-15, 6)?;
test3.set(-10, 6)?;
test3.set(-12, 6)?;
test3.set(0, 6)?;
test3.set(10, 5)?;
println!("\n-- loop test3");
for (k, v) in test3 {
println!("{:?} = {:?}", k, v);
}
let test4 = tx | Test4;
test4.set(10, 5)?;
test4.set(10, 0)?;
test4.set(13, 32)?;
test4.set(16, 2)?;
test4.set(16, 1)?;
test4.set(16, 3)?;
test4.set(0, 6)?;
test4.set(10, 5)?;
test4.set(0, 2)?;
dbg!(test4.del_val(0, 2)?);
dbg!(test4.del_val(0, 2)?);
println!("\n-- loop test4 rev");
for (k, v) in test4.rev() {
println!("{:?} = {:?}", k, v);
}
for i in test4.dup(16) {
println!("dup(16) {:?}", i);
}
// Tranzacția va fi angajată la sfârșitul domeniului de aplicare.
}
Ok(())
}
Executați ieșirea
mdbx file path /Users/z/rmw/mdbx/target/debug/examples/02.mdb
u16::from_le_bytes(Bin([4, 5])) = 1284
-- loop test1
[2] = [3]
[2, 3] = [4, 5]
[8, 1] = [9]
[9] = [10, 12]
[97, 98, 99] = [48, 49, 50]
[114, 109, 119, 46, 108, 105, 110, 107] = [68, 111, 119, 110, 32, 119, 105, 116, 104, 32, 68, 97, 116, 97, 32, 72, 101, 103, 101, 109, 111, 110, 121]
[examples/02.rs:57] test1.del_val([8, 1], [3])? = false
[examples/02.rs:58] test1.get([8, 1])?.unwrap() = Bin(
[
9,
],
)
[examples/02.rs:59] test1.del_val([8, 1], [9])? = true
[examples/02.rs:60] test1.get([8, 1])? = None
[examples/02.rs:62] test1.del([9])? = true
[examples/02.rs:63] test1.get([9])? = None
[examples/02.rs:64] test1.del([9])? = false
-- loop test2
abc = 012
rmw.link = Down with Data Hegemony
-- loop test3
0 = 6
10 = 5
13 = 32
16 = 32
-15 = 6
-12 = 6
-10 = 6
[examples/02.rs:100] test4.del_val(0, 2)? = true
[examples/02.rs:101] test4.del_val(0, 2)? = false
-- loop test4 rev
16 = 3
16 = 2
16 = 1
13 = 32
10 = 5
10 = 0
0 = 6
dup(16) 1
dup(16) 2
dup(16) 3
Citiri și scrieri rapide
Dacă dorim să citim sau să scriem pur și simplu o singură linie de date, putem utiliza zahărul sintactic al unei macro.
Citiți datele
r!(Test1.get [2, 3])
Scrierea datelor
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t:&[u8] = &val;
println!("{:?}",t);
},
None => unreachable!()
}
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX // Nume de variabile pentru baza de date ENV
Test1
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
}
fn main() -> Result<()> {
// Scrisoare rapidă
w!(Test1.set [2, 3],[4, 5]);
// Lectură rapidă
match r!(Test1.get [2, 3]) {
Some(r) => {
println!(
"\nu16::from_le_bytes({:?}) = {}",
r,
u16::from_le_bytes((*r).try_into()?)
);
}
None => unreachable!(),
}
// Operațiuni multiple pe mai multe baze de date în aceeași tranzacție
{
let tx = w!();
let test1 = tx | Test1;
test1.set(&[9], &[10, 12])?;
test1.set([8, 1], [9])?;
test1.set("rmw.link", "Down with Data Hegemony")?;
test1.set(&"abc", &"012")?;
println!("\n-- loop test1");
for (k, v) in test1 {
println!("{} = {}", k, v);
}
dbg!(test1.del_val([8, 1], [3])?);
dbg!(test1.get([8, 1])?.unwrap());
dbg!(test1.del_val([8, 1], [9])?);
dbg!(test1.get([8, 1])?);
dbg!(test1.del([9])?);
dbg!(test1.get([9])?);
dbg!(test1.del([9])?);
let test2 = tx | Test2;
test2.set("rmw.link", "Down with Data Hegemony")?;
test2.set(&"abc", &"012")?;
println!("\n-- loop test2");
for (k, v) in test2 {
println!("{} = {}", k, v);
}
let test3 = tx | Test3;
test3.set(13, 32)?;
test3.set(16, 32)?;
test3.set(-15, 6)?;
test3.set(-10, 6)?;
test3.set(-12, 6)?;
test3.set(0, 6)?;
test3.set(10, 5)?;
println!("\n-- loop test3");
for (k, v) in test3 {
println!("{:?} = {:?}", k, v);
}
let test4 = tx | Test4;
test4.set(10, 5)?;
test4.set(10, 0)?;
test4.set(13, 32)?;
test4.set(16, 2)?;
test4.set(16, 1)?;
test4.set(16, 3)?;
test4.set(0, 6)?;
test4.set(10, 5)?;
test4.set(0, 2)?;
dbg!(test4.del_val(0, 2)?);
dbg!(test4.del_val(0, 2)?);
println!("\n-- loop test4 rev");
for (k, v) in test4.rev() {
println!("{:?} = {:?}", k, v);
}
for i in test4.dup(16) {
println!("dup(16) {:?}", i);
}
// Tranzacția va fi angajată la sfârșitul domeniului de aplicare.
}
Ok(())
}
w!(Test1.set [2, 3],[4, 5])
Totul într-un singur rând, așa cum este scris în examples/02.rs.
Tipuri de date
În examples/02 . rs, definiția bazei de date arată astfel :
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t:&[u8] = &val;
println!("{:?}",t);
},
None => unreachable!()
}
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX // Nume de variabile pentru baza de date ENV
Test1
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
}
fn main() -> Result<()> {
// Scrisoare rapidă
w!(Test1.set [2, 3],[4, 5]);
// Lectură rapidă
match r!(Test1.get [2, 3]) {
Some(r) => {
println!(
"\nu16::from_le_bytes({:?}) = {}",
r,
u16::from_le_bytes((*r).try_into()?)
);
}
None => unreachable!(),
}
// Operațiuni multiple pe mai multe baze de date în aceeași tranzacție
{
let tx = w!();
let test1 = tx | Test1;
test1.set(&[9], &[10, 12])?;
test1.set([8, 1], [9])?;
test1.set("rmw.link", "Down with Data Hegemony")?;
test1.set(&"abc", &"012")?;
println!("\n-- loop test1");
for (k, v) in test1 {
println!("{} = {}", k, v);
}
dbg!(test1.del_val([8, 1], [3])?);
dbg!(test1.get([8, 1])?.unwrap());
dbg!(test1.del_val([8, 1], [9])?);
dbg!(test1.get([8, 1])?);
dbg!(test1.del([9])?);
dbg!(test1.get([9])?);
dbg!(test1.del([9])?);
let test2 = tx | Test2;
test2.set("rmw.link", "Down with Data Hegemony")?;
test2.set(&"abc", &"012")?;
println!("\n-- loop test2");
for (k, v) in test2 {
println!("{} = {}", k, v);
}
let test3 = tx | Test3;
test3.set(13, 32)?;
test3.set(16, 32)?;
test3.set(-15, 6)?;
test3.set(-10, 6)?;
test3.set(-12, 6)?;
test3.set(0, 6)?;
test3.set(10, 5)?;
println!("\n-- loop test3");
for (k, v) in test3 {
println!("{:?} = {:?}", k, v);
}
let test4 = tx | Test4;
test4.set(10, 5)?;
test4.set(10, 0)?;
test4.set(13, 32)?;
test4.set(16, 2)?;
test4.set(16, 1)?;
test4.set(16, 3)?;
test4.set(0, 6)?;
test4.set(10, 5)?;
test4.set(0, 2)?;
dbg!(test4.del_val(0, 2)?);
dbg!(test4.del_val(0, 2)?);
println!("\n-- loop test4 rev");
for (k, v) in test4.rev() {
println!("{:?} = {:?}", k, v);
}
for i in test4.dup(16) {
println!("dup(16) {:?}", i);
}
// Tranzacția va fi angajată la sfârșitul domeniului de aplicare.
}
Ok(())
}
w!(Test1.set [2, 3],[4, 5])
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
unde key
și val
definesc tipurile de date pentru chei și, respectiv, valori.
Dacă încercați să scrieți un tip de date care nu se potrivește cu cel definit, se va raporta o eroare, așa cum se arată în imaginea de mai jos:
Tipul de date implicit este Bin
, se poate scrie pe orice date care implementează AsRef<[u8]>
.
Dacă cheia sau valoarea este un șir de caractere utf8
, tipul de date poate fi setat la Str
.
Descifrarea Str
va returna un șir de caractere, similar cu let k:&str = &k;
.
În plus, Str
implementează și std::fmt::Display
, println!("{}",k)
va produce un șir de caractere lizibil.
Tipuri de date prestabilite
În plus față de Str
și Bin
, wrapper-ul vine, de asemenea, cu suport de date pentru usize, u128, u64, u32, u16, u8, isize, i128, i64, i32, i16, i8, f32, f64.
Stegulețe de bază de date
Puteți vedea stegulețele bazei de date adăugate la datele din examples/02.rs la Test4
. flag DUPSORT
Baza de date libmdbx are un număr de indicatori ( MDBX_db_flags_t
) care pot fi stabilite.
- REVERSEKEY utilizează compararea inversă a șirurilor de caractere pentru chei. (util atunci când se utilizează numere mici cu coduri de capăt ca chei)
- DUPSORT utilizează duplicate sortate, adică permite mai multe valori pentru o cheie.
- INTEGERKEY Cheie numerică nativă ordonată pe octeți uint32_t sau uint64_t. Cheile trebuie să aibă aceeași dimensiune și trebuie să fie aliniate atunci când sunt transmise ca argument.
- DUPFIXED Dimensiunea valorilor datelor trebuie să fie aceeași dacă se utilizează DUPSORT (permite o numărare rapidă a numărului de valori).
- DUPSORT și DUPFIXED sunt necesare pentru INTEGERDUP; valorile sunt numere întregi (similar cu INTEGERKEY). Valorile datelor trebuie să aibă toate aceeași dimensiune și trebuie să fie aliniate atunci când sunt transmise ca parametri.
- REVERSEDUP utilizează DUPSORT; comparația inversă a șirurilor de caractere este utilizată pentru valorile datelor.
- CREATE creează baza de date dacă aceasta nu există (adăugată în mod implicit).
- DB_ACCEDE Deschide o sub-bază de date existentă creată cu ajutorul indicatorului necunoscut.
Acest indicator DB_ACCEDE este destinat deschiderii bazelor de date secundare existente create cu indicatori necunoscuți (REVERSEKEY, DUPSORT, INTEGERKEY, DUPFIXED, INTEGERDUP și REVERSEDUP).
În acest caz, baza de date secundară nu va returna o eroare INCOMPATIBLE, ci va fi deschisă cu stegulețele utilizate pentru a o crea, iar aplicația poate determina apoi stegulețele reale cu mdbx_dbi_flags().
DUPSORT : O cheie corespunde mai multor valori
DUPSORT
, înseamnă că unei chei îi pot corespunde mai multe valori.
Dacă doriți să setați mai multe stegulețe, scrieți după cum urmează flag DUPSORT | DUPFIXED
.dup(key)
iterator care returnează toate valorile care corespund unei chei
Această funcție este disponibilă numai pentru bazele de date marcate cu DUPSORT
, unde o cheie poate corespunde mai multor valori.
Pentru bazele de date DUPSORT
, get
returnează numai prima valoare pentru această cheie. Pentru a obține toate valorile, utilizați dup
.
Stegulețe de bază de date adăugate automat în mod implicit
Atunci când tipul de date este u32
/ u64
/ usize
, se adaugă automat marcajul bazei de date. INTEGERKEY
.
La mașinile cu codificare small-end, se adaugă automat alte tipuri numerice REVERSEKEY
Indicatorul de bază de date este adăugat automat atunci când tipul de date este / / .
Ștergerea datelor
.del(key)
Ștergerea unei taste
.del(val)
Șterge valoarea corespunzătoare unei chei.
Dacă baza de date are marcajul DUPSORT
, toate valorile din această cheie vor fi șterse.
Returnează true
dacă sunt șterse date și false
dacă nu.
.del_val(key,val)
Ștergere cu potrivire exactă
.del_val(key,val)
Șterge perechile cheie-valoare care corespund exact parametrilor de intrare.
Returnează true
dacă sunt șterse date și false
dacă nu.
Traversare
traversare secvențială
Datorită implementării std::iter::IntoIterator
. se poate traversa direct după cum urmează :
for (k, v) in test1
.rev()
Traversarea inversă a ordinii
for (k, v) in test4.rev()
Sortare
Cheile libmdbx sunt sortate în ordinea dicționarului.
Pentru numere fără semn
sunt ordonate de la cel mai mic la cel mai mare, deoarece stegulețele bazei de date sunt adăugate automat (
u32
/u64
/usize
sunt adăugate laINTEGERKEY
, altele sunt adăugate laREVERSEKEY
în funcție de codul mașină).Pentru numere cu semn
ordinea este: mai întâi 0, apoi toate numerele pozitive de la cel mai mic la cel mai mare, apoi toate numerele negative de la cel mai mic la cel mai mare.
Iteratori de interval
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t:&[u8] = &val;
println!("{:?}",t);
},
None => unreachable!()
}
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX // Nume de variabile pentru baza de date ENV
Test1
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
}
fn main() -> Result<()> {
// Scrisoare rapidă
w!(Test1.set [2, 3],[4, 5]);
// Lectură rapidă
match r!(Test1.get [2, 3]) {
Some(r) => {
println!(
"\nu16::from_le_bytes({:?}) = {}",
r,
u16::from_le_bytes((*r).try_into()?)
);
}
None => unreachable!(),
}
// Operațiuni multiple pe mai multe baze de date în aceeași tranzacție
{
let tx = w!();
let test1 = tx | Test1;
test1.set(&[9], &[10, 12])?;
test1.set([8, 1], [9])?;
test1.set("rmw.link", "Down with Data Hegemony")?;
test1.set(&"abc", &"012")?;
println!("\n-- loop test1");
for (k, v) in test1 {
println!("{} = {}", k, v);
}
dbg!(test1.del_val([8, 1], [3])?);
dbg!(test1.get([8, 1])?.unwrap());
dbg!(test1.del_val([8, 1], [9])?);
dbg!(test1.get([8, 1])?);
dbg!(test1.del([9])?);
dbg!(test1.get([9])?);
dbg!(test1.del([9])?);
let test2 = tx | Test2;
test2.set("rmw.link", "Down with Data Hegemony")?;
test2.set(&"abc", &"012")?;
println!("\n-- loop test2");
for (k, v) in test2 {
println!("{} = {}", k, v);
}
let test3 = tx | Test3;
test3.set(13, 32)?;
test3.set(16, 32)?;
test3.set(-15, 6)?;
test3.set(-10, 6)?;
test3.set(-12, 6)?;
test3.set(0, 6)?;
test3.set(10, 5)?;
println!("\n-- loop test3");
for (k, v) in test3 {
println!("{:?} = {:?}", k, v);
}
let test4 = tx | Test4;
test4.set(10, 5)?;
test4.set(10, 0)?;
test4.set(13, 32)?;
test4.set(16, 2)?;
test4.set(16, 1)?;
test4.set(16, 3)?;
test4.set(0, 6)?;
test4.set(10, 5)?;
test4.set(0, 2)?;
dbg!(test4.del_val(0, 2)?);
dbg!(test4.del_val(0, 2)?);
println!("\n-- loop test4 rev");
for (k, v) in test4.rev() {
println!("{:?} = {:?}", k, v);
}
for i in test4.dup(16) {
println!("dup(16) {:?}", i);
}
// Tranzacția va fi angajată la sfârșitul domeniului de aplicare.
}
Ok(())
}
w!(Test1.set [2, 3],[4, 5])
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
use anyhow::Result;
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX
Test0
Test1
key u16
val u64
flag DUPSORT
Test2
key u32
val u64
}
macro_rules! range_rev {
($var:ident, $range:expr) => {
println!("\n# {}.rev_range({:?})", stringify!($var), $range);
for i in $var.range_rev($range) {
println!("{:?}", i);
}
};
}
macro_rules! range {
($var:ident, $range:expr) => {
println!("\n# {}.range({:?})", stringify!($var), $range);
for i in $var.range($range) {
println!("{:?}", i);
}
};
}
fn main() -> Result<()> {
{
println!("\n> Test0");
let tx = &MDBX.w()?;
let test0 = tx | Test0;
test0.set([0], [0, 1])?;
test0.set([1], [1, 2])?;
test0.set([2], [2, 3])?;
test0.set([1, 1], [1, 3])?;
test0.set([1, 2], [1, 3])?;
test0.set([3], [])?;
range!(test0, [1]..);
let begin: &[u8] = &[1, 1];
range!(test0, begin..=&[2]);
}
{
let tx = &MDBX.w()?;
let test1 = tx | Test1;
test1.set(2, 9)?;
test1.set(2, 4)?;
test1.set(9, 7)?;
test1.set(3, 0)?;
test1.set(3, 8)?;
test1.set(5, 3)?;
test1.set(5, 8)?;
test1.set(9, 1)?;
println!("-- all");
for i in test1 {
println!("{:?}", i);
}
range!(test1, 1..3);
range!(test1, 5..2);
range!(test1, 1..=3);
range!(test1, ..3);
range!(test1, 3..);
range_rev!(test1, ..1);
range_rev!(test1, ..=1);
}
{
println!("\n> Test2");
let tx = &MDBX.w()?;
let test2 = tx | Test2;
test2.set(2, 9)?;
test2.set(1, 2)?;
test2.set(2, 4)?;
test2.set(1, 5)?;
test2.set(9, 7)?;
test2.set(9, 1)?;
test2.set(0, 0)?;
range!(test2, 1..3);
range!(test2, 1..=3);
range!(test2, ..3);
range!(test2, 2..);
range_rev!(test2, ..1);
range_rev!(test2, 2..);
range_rev!(test2, ..=1);
}
Ok(())
}
Rulați ieșirea din
mdbx file path /Users/z/rmw/mdbx/target/debug/examples/range.mdb
> Test0
# test0.range([1]..)
(Bin([1]), Bin([1, 2]))
(Bin([1, 1]), Bin([1, 3]))
(Bin([1, 2]), Bin([1, 3]))
(Bin([2]), Bin([2, 3]))
(Bin([3]), Bin([]))
# test0.range([1, 1]..=[2])
(Bin([1, 1]), Bin([1, 3]))
(Bin([1, 2]), Bin([1, 3]))
(Bin([2]), Bin([2, 3]))
-- all
(2, 4)
(2, 9)
(3, 0)
(3, 8)
(5, 3)
(5, 8)
(9, 1)
(9, 2)
(9, 7)
# test1.range(1..3)
(2, 4)
(2, 9)
# test1.range(5..2)
(5, 8)
(5, 3)
(3, 8)
(3, 0)
# test1.range(1..=3)
(2, 4)
(2, 9)
(3, 0)
(3, 8)
# test1.range(..3)
(2, 4)
(2, 9)
# test1.range(3..)
(3, 0)
(3, 8)
(5, 3)
(5, 8)
(9, 1)
(9, 2)
(9, 7)
# test1.rev_range(..1)
(9, 7)
(9, 2)
(9, 1)
(5, 8)
(5, 3)
(3, 8)
(3, 0)
(2, 9)
(2, 4)
# test1.rev_range(..=1)
(9, 7)
(9, 2)
(9, 1)
(5, 8)
(5, 3)
(3, 8)
(3, 0)
(2, 9)
(2, 4)
> Test2
# test2.range(1..3)
(1, 5)
(2, 4)
# test2.range(1..=3)
(1, 5)
(2, 4)
# test2.range(..3)
(0, 0)
(1, 5)
(2, 4)
# test2.range(2..)
(2, 4)
(9, 1)
# test2.rev_range(..1)
(9, 1)
(2, 4)
# test2.rev_range(2..)
(2, 4)
(1, 5)
(0, 0)
# test2.rev_range(..=1)
(9, 1)
(2, 4)
(1, 5)
.range(begin..end)
Interval Iterare
Pentru numere, un interval este un interval numeric.
Pentru binar, același interval poate fi construit, de exemplu.
let begin : &[u8] = &[1,1];
for (k,v) in test0.range(begin..=&[2]) {}
În cazul în care begin
este mai mare decât end
, se va derula invers.
De exemplu, test1.range(5..2)
va afișa următoarele :
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t:&[u8] = &val;
println!("{:?}",t);
},
None => unreachable!()
}
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX // Nume de variabile pentru baza de date ENV
Test1
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
}
fn main() -> Result<()> {
// Scrisoare rapidă
w!(Test1.set [2, 3],[4, 5]);
// Lectură rapidă
match r!(Test1.get [2, 3]) {
Some(r) => {
println!(
"\nu16::from_le_bytes({:?}) = {}",
r,
u16::from_le_bytes((*r).try_into()?)
);
}
None => unreachable!(),
}
// Operațiuni multiple pe mai multe baze de date în aceeași tranzacție
{
let tx = w!();
let test1 = tx | Test1;
test1.set(&[9], &[10, 12])?;
test1.set([8, 1], [9])?;
test1.set("rmw.link", "Down with Data Hegemony")?;
test1.set(&"abc", &"012")?;
println!("\n-- loop test1");
for (k, v) in test1 {
println!("{} = {}", k, v);
}
dbg!(test1.del_val([8, 1], [3])?);
dbg!(test1.get([8, 1])?.unwrap());
dbg!(test1.del_val([8, 1], [9])?);
dbg!(test1.get([8, 1])?);
dbg!(test1.del([9])?);
dbg!(test1.get([9])?);
dbg!(test1.del([9])?);
let test2 = tx | Test2;
test2.set("rmw.link", "Down with Data Hegemony")?;
test2.set(&"abc", &"012")?;
println!("\n-- loop test2");
for (k, v) in test2 {
println!("{} = {}", k, v);
}
let test3 = tx | Test3;
test3.set(13, 32)?;
test3.set(16, 32)?;
test3.set(-15, 6)?;
test3.set(-10, 6)?;
test3.set(-12, 6)?;
test3.set(0, 6)?;
test3.set(10, 5)?;
println!("\n-- loop test3");
for (k, v) in test3 {
println!("{:?} = {:?}", k, v);
}
let test4 = tx | Test4;
test4.set(10, 5)?;
test4.set(10, 0)?;
test4.set(13, 32)?;
test4.set(16, 2)?;
test4.set(16, 1)?;
test4.set(16, 3)?;
test4.set(0, 6)?;
test4.set(10, 5)?;
test4.set(0, 2)?;
dbg!(test4.del_val(0, 2)?);
dbg!(test4.del_val(0, 2)?);
println!("\n-- loop test4 rev");
for (k, v) in test4.rev() {
println!("{:?} = {:?}", k, v);
}
for i in test4.dup(16) {
println!("dup(16) {:?}", i);
}
// Tranzacția va fi angajată la sfârșitul domeniului de aplicare.
}
Ok(())
}
w!(Test1.set [2, 3],[4, 5])
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
use anyhow::Result;
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX
Test0
Test1
key u16
val u64
flag DUPSORT
Test2
key u32
val u64
}
macro_rules! range_rev {
($var:ident, $range:expr) => {
println!("\n# {}.rev_range({:?})", stringify!($var), $range);
for i in $var.range_rev($range) {
println!("{:?}", i);
}
};
}
macro_rules! range {
($var:ident, $range:expr) => {
println!("\n# {}.range({:?})", stringify!($var), $range);
for i in $var.range($range) {
println!("{:?}", i);
}
};
}
fn main() -> Result<()> {
{
println!("\n> Test0");
let tx = &MDBX.w()?;
let test0 = tx | Test0;
test0.set([0], [0, 1])?;
test0.set([1], [1, 2])?;
test0.set([2], [2, 3])?;
test0.set([1, 1], [1, 3])?;
test0.set([1, 2], [1, 3])?;
test0.set([3], [])?;
range!(test0, [1]..);
let begin: &[u8] = &[1, 1];
range!(test0, begin..=&[2]);
}
{
let tx = &MDBX.w()?;
let test1 = tx | Test1;
test1.set(2, 9)?;
test1.set(2, 4)?;
test1.set(9, 7)?;
test1.set(3, 0)?;
test1.set(3, 8)?;
test1.set(5, 3)?;
test1.set(5, 8)?;
test1.set(9, 1)?;
println!("-- all");
for i in test1 {
println!("{:?}", i);
}
range!(test1, 1..3);
range!(test1, 5..2);
range!(test1, 1..=3);
range!(test1, ..3);
range!(test1, 3..);
range_rev!(test1, ..1);
range_rev!(test1, ..=1);
}
{
println!("\n> Test2");
let tx = &MDBX.w()?;
let test2 = tx | Test2;
test2.set(2, 9)?;
test2.set(1, 2)?;
test2.set(2, 4)?;
test2.set(1, 5)?;
test2.set(9, 7)?;
test2.set(9, 1)?;
test2.set(0, 0)?;
range!(test2, 1..3);
range!(test2, 1..=3);
range!(test2, ..3);
range!(test2, 2..);
range_rev!(test2, ..1);
range_rev!(test2, 2..);
range_rev!(test2, ..=1);
}
Ok(())
}
(5, 8)
(5, 3)
(3, 8)
(3, 0)
Iterația pe intervale nu este acceptată RangeFull
, adică utilizarea ..
nu este acceptată, vă rugăm să folosiți în schimb traversarea menționată mai sus.
.rev_range
Intervale inversate
Dacă doriți să obțineți un interval inversat care este mai mic sau egal cu o valoare, puteți face acest lucru
test2.rev_range(2..)
Rezultatul va fi
(2, 4)
(1, 5)
(0, 0)
Pentru intervalul inversat nu trebuie să fie setat unul dintre begin
sau end
, deoarece, dacă ambele sunt setate, puteți utiliza întotdeauna range(end..begin)
pentru a obține același efect.
Personalizarea tipurilor de date
Codul demo este disponibil la github.com/rmw-lib/mdbx-example/01
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t:&[u8] = &val;
println!("{:?}",t);
},
None => unreachable!()
}
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX // Nume de variabile pentru baza de date ENV
Test1
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
}
fn main() -> Result<()> {
// Scrisoare rapidă
w!(Test1.set [2, 3],[4, 5]);
// Lectură rapidă
match r!(Test1.get [2, 3]) {
Some(r) => {
println!(
"\nu16::from_le_bytes({:?}) = {}",
r,
u16::from_le_bytes((*r).try_into()?)
);
}
None => unreachable!(),
}
// Operațiuni multiple pe mai multe baze de date în aceeași tranzacție
{
let tx = w!();
let test1 = tx | Test1;
test1.set(&[9], &[10, 12])?;
test1.set([8, 1], [9])?;
test1.set("rmw.link", "Down with Data Hegemony")?;
test1.set(&"abc", &"012")?;
println!("\n-- loop test1");
for (k, v) in test1 {
println!("{} = {}", k, v);
}
dbg!(test1.del_val([8, 1], [3])?);
dbg!(test1.get([8, 1])?.unwrap());
dbg!(test1.del_val([8, 1], [9])?);
dbg!(test1.get([8, 1])?);
dbg!(test1.del([9])?);
dbg!(test1.get([9])?);
dbg!(test1.del([9])?);
let test2 = tx | Test2;
test2.set("rmw.link", "Down with Data Hegemony")?;
test2.set(&"abc", &"012")?;
println!("\n-- loop test2");
for (k, v) in test2 {
println!("{} = {}", k, v);
}
let test3 = tx | Test3;
test3.set(13, 32)?;
test3.set(16, 32)?;
test3.set(-15, 6)?;
test3.set(-10, 6)?;
test3.set(-12, 6)?;
test3.set(0, 6)?;
test3.set(10, 5)?;
println!("\n-- loop test3");
for (k, v) in test3 {
println!("{:?} = {:?}", k, v);
}
let test4 = tx | Test4;
test4.set(10, 5)?;
test4.set(10, 0)?;
test4.set(13, 32)?;
test4.set(16, 2)?;
test4.set(16, 1)?;
test4.set(16, 3)?;
test4.set(0, 6)?;
test4.set(10, 5)?;
test4.set(0, 2)?;
dbg!(test4.del_val(0, 2)?);
dbg!(test4.del_val(0, 2)?);
println!("\n-- loop test4 rev");
for (k, v) in test4.rev() {
println!("{:?} = {:?}", k, v);
}
for i in test4.dup(16) {
println!("dup(16) {:?}", i);
}
// Tranzacția va fi angajată la sfârșitul domeniului de aplicare.
}
Ok(())
}
w!(Test1.set [2, 3],[4, 5])
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
use anyhow::Result;
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX
Test0
Test1
key u16
val u64
flag DUPSORT
Test2
key u32
val u64
}
macro_rules! range_rev {
($var:ident, $range:expr) => {
println!("\n# {}.rev_range({:?})", stringify!($var), $range);
for i in $var.range_rev($range) {
println!("{:?}", i);
}
};
}
macro_rules! range {
($var:ident, $range:expr) => {
println!("\n# {}.range({:?})", stringify!($var), $range);
for i in $var.range($range) {
println!("{:?}", i);
}
};
}
fn main() -> Result<()> {
{
println!("\n> Test0");
let tx = &MDBX.w()?;
let test0 = tx | Test0;
test0.set([0], [0, 1])?;
test0.set([1], [1, 2])?;
test0.set([2], [2, 3])?;
test0.set([1, 1], [1, 3])?;
test0.set([1, 2], [1, 3])?;
test0.set([3], [])?;
range!(test0, [1]..);
let begin: &[u8] = &[1, 1];
range!(test0, begin..=&[2]);
}
{
let tx = &MDBX.w()?;
let test1 = tx | Test1;
test1.set(2, 9)?;
test1.set(2, 4)?;
test1.set(9, 7)?;
test1.set(3, 0)?;
test1.set(3, 8)?;
test1.set(5, 3)?;
test1.set(5, 8)?;
test1.set(9, 1)?;
println!("-- all");
for i in test1 {
println!("{:?}", i);
}
range!(test1, 1..3);
range!(test1, 5..2);
range!(test1, 1..=3);
range!(test1, ..3);
range!(test1, 3..);
range_rev!(test1, ..1);
range_rev!(test1, ..=1);
}
{
println!("\n> Test2");
let tx = &MDBX.w()?;
let test2 = tx | Test2;
test2.set(2, 9)?;
test2.set(1, 2)?;
test2.set(2, 4)?;
test2.set(1, 5)?;
test2.set(9, 7)?;
test2.set(9, 1)?;
test2.set(0, 0)?;
range!(test2, 1..3);
range!(test2, 1..=3);
range!(test2, ..3);
range!(test2, 2..);
range_rev!(test2, ..1);
range_rev!(test2, 2..);
range_rev!(test2, ..=1);
}
Ok(())
}
(5, 8)
(5, 3)
(3, 8)
(3, 0)
use anyhow::Result;
use mdbx::prelude::*;
use speedy::{Readable, Writable};
#[derive(PartialEq, Debug, Readable, Writable)]
pub struct City {
name: String,
lnglat: (u32, u32),
}
impl FromMdbx for City {
fn from_mdbx(_: PtrTx, val: MDBX_val) -> Self {
Self::read_from_buffer(val_bytes!(val)).unwrap()
}
}
impl ToAsRef<City, Vec<u8>> for City {
fn to_as_ref(&self) -> Vec<u8> {
self.write_to_vec().unwrap()
}
}
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
db_path.into()
});
mdbx! {
MDBX
Test
key u16
val City
}
fn main() -> Result<()> {
let city = City {
name: "BeiJing".into(),
lnglat: (11640, 3990),
};
let tx = w!();
let test = tx | Test;
test.set(1, city)?;
println!("{:?}", test.get(1)?);
Ok(())
}
Rezultatul este următorul
Some(City { name: "BeiJing", lnglat: (11640, 3990) })
În exemplul de tip personalizat, folosim speedy
pentru a face serializarea ( speedy
evaluarea performanțelor ).
Implementarea tipului personalizat FromMdbx
și ToAsRef
pot fi apoi stocate la mdbx
.
Dacă folosiți o anumită bibliotecă de serializare, puteți personaliza, de asemenea, macrourile de atribute pentru a simplifica procesul.
Simplificarea tipurilor personalizate cu ajutorul macrourilor de atribute
Implementarea unui macro atribut este la fel de simplă ca mdbx_speedy
Codul macro atributelor este următorul :
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t:&[u8] = &val;
println!("{:?}",t);
},
None => unreachable!()
}
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX // Nume de variabile pentru baza de date ENV
Test1
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
}
fn main() -> Result<()> {
// Scrisoare rapidă
w!(Test1.set [2, 3],[4, 5]);
// Lectură rapidă
match r!(Test1.get [2, 3]) {
Some(r) => {
println!(
"\nu16::from_le_bytes({:?}) = {}",
r,
u16::from_le_bytes((*r).try_into()?)
);
}
None => unreachable!(),
}
// Operațiuni multiple pe mai multe baze de date în aceeași tranzacție
{
let tx = w!();
let test1 = tx | Test1;
test1.set(&[9], &[10, 12])?;
test1.set([8, 1], [9])?;
test1.set("rmw.link", "Down with Data Hegemony")?;
test1.set(&"abc", &"012")?;
println!("\n-- loop test1");
for (k, v) in test1 {
println!("{} = {}", k, v);
}
dbg!(test1.del_val([8, 1], [3])?);
dbg!(test1.get([8, 1])?.unwrap());
dbg!(test1.del_val([8, 1], [9])?);
dbg!(test1.get([8, 1])?);
dbg!(test1.del([9])?);
dbg!(test1.get([9])?);
dbg!(test1.del([9])?);
let test2 = tx | Test2;
test2.set("rmw.link", "Down with Data Hegemony")?;
test2.set(&"abc", &"012")?;
println!("\n-- loop test2");
for (k, v) in test2 {
println!("{} = {}", k, v);
}
let test3 = tx | Test3;
test3.set(13, 32)?;
test3.set(16, 32)?;
test3.set(-15, 6)?;
test3.set(-10, 6)?;
test3.set(-12, 6)?;
test3.set(0, 6)?;
test3.set(10, 5)?;
println!("\n-- loop test3");
for (k, v) in test3 {
println!("{:?} = {:?}", k, v);
}
let test4 = tx | Test4;
test4.set(10, 5)?;
test4.set(10, 0)?;
test4.set(13, 32)?;
test4.set(16, 2)?;
test4.set(16, 1)?;
test4.set(16, 3)?;
test4.set(0, 6)?;
test4.set(10, 5)?;
test4.set(0, 2)?;
dbg!(test4.del_val(0, 2)?);
dbg!(test4.del_val(0, 2)?);
println!("\n-- loop test4 rev");
for (k, v) in test4.rev() {
println!("{:?} = {:?}", k, v);
}
for i in test4.dup(16) {
println!("dup(16) {:?}", i);
}
// Tranzacția va fi angajată la sfârșitul domeniului de aplicare.
}
Ok(())
}
w!(Test1.set [2, 3],[4, 5])
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
use anyhow::Result;
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX
Test0
Test1
key u16
val u64
flag DUPSORT
Test2
key u32
val u64
}
macro_rules! range_rev {
($var:ident, $range:expr) => {
println!("\n# {}.rev_range({:?})", stringify!($var), $range);
for i in $var.range_rev($range) {
println!("{:?}", i);
}
};
}
macro_rules! range {
($var:ident, $range:expr) => {
println!("\n# {}.range({:?})", stringify!($var), $range);
for i in $var.range($range) {
println!("{:?}", i);
}
};
}
fn main() -> Result<()> {
{
println!("\n> Test0");
let tx = &MDBX.w()?;
let test0 = tx | Test0;
test0.set([0], [0, 1])?;
test0.set([1], [1, 2])?;
test0.set([2], [2, 3])?;
test0.set([1, 1], [1, 3])?;
test0.set([1, 2], [1, 3])?;
test0.set([3], [])?;
range!(test0, [1]..);
let begin: &[u8] = &[1, 1];
range!(test0, begin..=&[2]);
}
{
let tx = &MDBX.w()?;
let test1 = tx | Test1;
test1.set(2, 9)?;
test1.set(2, 4)?;
test1.set(9, 7)?;
test1.set(3, 0)?;
test1.set(3, 8)?;
test1.set(5, 3)?;
test1.set(5, 8)?;
test1.set(9, 1)?;
println!("-- all");
for i in test1 {
println!("{:?}", i);
}
range!(test1, 1..3);
range!(test1, 5..2);
range!(test1, 1..=3);
range!(test1, ..3);
range!(test1, 3..);
range_rev!(test1, ..1);
range_rev!(test1, ..=1);
}
{
println!("\n> Test2");
let tx = &MDBX.w()?;
let test2 = tx | Test2;
test2.set(2, 9)?;
test2.set(1, 2)?;
test2.set(2, 4)?;
test2.set(1, 5)?;
test2.set(9, 7)?;
test2.set(9, 1)?;
test2.set(0, 0)?;
range!(test2, 1..3);
range!(test2, 1..=3);
range!(test2, ..3);
range!(test2, 2..);
range_rev!(test2, ..1);
range_rev!(test2, 2..);
range_rev!(test2, ..=1);
}
Ok(())
}
(5, 8)
(5, 3)
(3, 8)
(3, 0)
use anyhow::Result;
use mdbx::prelude::*;
use speedy::{Readable, Writable};
#[derive(PartialEq, Debug, Readable, Writable)]
pub struct City {
name: String,
lnglat: (u32, u32),
}
impl FromMdbx for City {
fn from_mdbx(_: PtrTx, val: MDBX_val) -> Self {
Self::read_from_buffer(val_bytes!(val)).unwrap()
}
}
impl ToAsRef<City, Vec<u8>> for City {
fn to_as_ref(&self) -> Vec<u8> {
self.write_to_vec().unwrap()
}
}
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
db_path.into()
});
mdbx! {
MDBX
Test
key u16
val City
}
fn main() -> Result<()> {
let city = City {
name: "BeiJing".into(),
lnglat: (11640, 3990),
};
let tx = w!();
let test = tx | Test;
test.set(1, city)?;
println!("{:?}", test.get(1)?);
Ok(())
}
extern crate proc_macro;
extern crate syn;
#[macro_use]
extern crate quote;
use proc_macro::TokenStream;
#[proc_macro_derive(MdbxSpeedy)]
pub fn mdbx_speedy(ts: TokenStream) -> TokenStream {
let ast: syn::DeriveInput = syn::parse(ts).unwrap();
let name = &ast.ident;
quote! {
impl mdbx::prelude::FromMdbx for #name {
fn from_mdbx(_: mdbx::prelude::PtrTx, val: mdbx::prelude::MDBX_val) -> Self {
Self::read_from_buffer(val_bytes!(val)).unwrap()
}
}
impl mdbx::prelude::ToAsRef<#name, Vec<u8>> for #name {
fn to_as_ref(&self) -> Vec<u8> {
self.write_to_vec().unwrap()
}
}
}
.into()
}
Începeți cu cargo add mdbx-speedy
în propriul proiect și apoi puteți personaliza rapid tipul (consultați github.com/rmw-lib/mdbx-example/02 pentru codul demo).
use db::User;
let id = 1234;
let user = r!(User.get id);
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(
MDBX,
{
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
},
r,
w
);
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
fn main() -> Result<()> {
// Afișează numărul de versiune al libmdbx
unsafe {
println!(
"mdbx version https://github.com/erthink/libmdbx/releases/tag/v{}.{}.{}",
mdbx_version.major, mdbx_version.minor, mdbx_version.release
);
}
// Citire și scriere cu mai multe fire
let t = std::thread::spawn(|| {
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t: &[u8] = &val;
println!("{:?}", t);
}
None => unreachable!(),
}
Ok(())
});
t.join().unwrap()?;
Ok(())
}
#[derive(Clone, Debug)]
pub struct Config {
path: PathBuf,
mode: ffi::mdbx_mode_t,
flag: flag::ENV,
sync_period: u64,
sync_bytes: u64,
max_db: u64,
pagesize: isize,
}
lazy_static! {
pub static ref ENV_CONFIG_DEFAULT: Config = Config {
path:PathBuf::new(),
mode: 0o600,
//https://github.com/erthink/libmdbx/issues/248
sync_period : 65536, // În 1/65536 de secundă
sync_bytes : 65536,
max_db : 256,
flag : (
flag::ENV::MDBX_EXCLUSIVE
| flag::ENV::MDBX_LIFORECLAIM
| flag::ENV::MDBX_COALESCE
| flag::ENV::MDBX_NOMEMINIT
| flag::ENV::MDBX_NOSUBDIR
| flag::ENV::MDBX_SAFE_NOSYNC
// | flag::ENV::MDBX_SYNC_DURABLE
),
pagesize:-1
};
}
mdbx! {
MDBX // Numele variabilei din baza de date Env
Test // Testul bazei de date
}
let tx = w!();
let test = tx | Test;
test.set([1, 2], [6])?;
println!("test1 get {:?}", test.get([1, 2]));
match test.get([1, 2])? {
Some(val) => {
let t:&[u8] = &val;
println!("{:?}",t);
},
None => unreachable!()
}
use anyhow::{Ok, Result};
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX // Nume de variabile pentru baza de date ENV
Test1
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
}
fn main() -> Result<()> {
// Scrisoare rapidă
w!(Test1.set [2, 3],[4, 5]);
// Lectură rapidă
match r!(Test1.get [2, 3]) {
Some(r) => {
println!(
"\nu16::from_le_bytes({:?}) = {}",
r,
u16::from_le_bytes((*r).try_into()?)
);
}
None => unreachable!(),
}
// Operațiuni multiple pe mai multe baze de date în aceeași tranzacție
{
let tx = w!();
let test1 = tx | Test1;
test1.set(&[9], &[10, 12])?;
test1.set([8, 1], [9])?;
test1.set("rmw.link", "Down with Data Hegemony")?;
test1.set(&"abc", &"012")?;
println!("\n-- loop test1");
for (k, v) in test1 {
println!("{} = {}", k, v);
}
dbg!(test1.del_val([8, 1], [3])?);
dbg!(test1.get([8, 1])?.unwrap());
dbg!(test1.del_val([8, 1], [9])?);
dbg!(test1.get([8, 1])?);
dbg!(test1.del([9])?);
dbg!(test1.get([9])?);
dbg!(test1.del([9])?);
let test2 = tx | Test2;
test2.set("rmw.link", "Down with Data Hegemony")?;
test2.set(&"abc", &"012")?;
println!("\n-- loop test2");
for (k, v) in test2 {
println!("{} = {}", k, v);
}
let test3 = tx | Test3;
test3.set(13, 32)?;
test3.set(16, 32)?;
test3.set(-15, 6)?;
test3.set(-10, 6)?;
test3.set(-12, 6)?;
test3.set(0, 6)?;
test3.set(10, 5)?;
println!("\n-- loop test3");
for (k, v) in test3 {
println!("{:?} = {:?}", k, v);
}
let test4 = tx | Test4;
test4.set(10, 5)?;
test4.set(10, 0)?;
test4.set(13, 32)?;
test4.set(16, 2)?;
test4.set(16, 1)?;
test4.set(16, 3)?;
test4.set(0, 6)?;
test4.set(10, 5)?;
test4.set(0, 2)?;
dbg!(test4.del_val(0, 2)?);
dbg!(test4.del_val(0, 2)?);
println!("\n-- loop test4 rev");
for (k, v) in test4.rev() {
println!("{:?} = {:?}", k, v);
}
for i in test4.dup(16) {
println!("dup(16) {:?}", i);
}
// Tranzacția va fi angajată la sfârșitul domeniului de aplicare.
}
Ok(())
}
w!(Test1.set [2, 3],[4, 5])
Test2
key Str
val Str
Test3
key i32
val u64
Test4
key u64
val u16
flag DUPSORT
use anyhow::Result;
use mdbx::prelude::*;
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
println!("mdbx file path {}", db_path.display());
db_path.into()
});
mdbx! {
MDBX
Test0
Test1
key u16
val u64
flag DUPSORT
Test2
key u32
val u64
}
macro_rules! range_rev {
($var:ident, $range:expr) => {
println!("\n# {}.rev_range({:?})", stringify!($var), $range);
for i in $var.range_rev($range) {
println!("{:?}", i);
}
};
}
macro_rules! range {
($var:ident, $range:expr) => {
println!("\n# {}.range({:?})", stringify!($var), $range);
for i in $var.range($range) {
println!("{:?}", i);
}
};
}
fn main() -> Result<()> {
{
println!("\n> Test0");
let tx = &MDBX.w()?;
let test0 = tx | Test0;
test0.set([0], [0, 1])?;
test0.set([1], [1, 2])?;
test0.set([2], [2, 3])?;
test0.set([1, 1], [1, 3])?;
test0.set([1, 2], [1, 3])?;
test0.set([3], [])?;
range!(test0, [1]..);
let begin: &[u8] = &[1, 1];
range!(test0, begin..=&[2]);
}
{
let tx = &MDBX.w()?;
let test1 = tx | Test1;
test1.set(2, 9)?;
test1.set(2, 4)?;
test1.set(9, 7)?;
test1.set(3, 0)?;
test1.set(3, 8)?;
test1.set(5, 3)?;
test1.set(5, 8)?;
test1.set(9, 1)?;
println!("-- all");
for i in test1 {
println!("{:?}", i);
}
range!(test1, 1..3);
range!(test1, 5..2);
range!(test1, 1..=3);
range!(test1, ..3);
range!(test1, 3..);
range_rev!(test1, ..1);
range_rev!(test1, ..=1);
}
{
println!("\n> Test2");
let tx = &MDBX.w()?;
let test2 = tx | Test2;
test2.set(2, 9)?;
test2.set(1, 2)?;
test2.set(2, 4)?;
test2.set(1, 5)?;
test2.set(9, 7)?;
test2.set(9, 1)?;
test2.set(0, 0)?;
range!(test2, 1..3);
range!(test2, 1..=3);
range!(test2, ..3);
range!(test2, 2..);
range_rev!(test2, ..1);
range_rev!(test2, 2..);
range_rev!(test2, ..=1);
}
Ok(())
}
(5, 8)
(5, 3)
(3, 8)
(3, 0)
use anyhow::Result;
use mdbx::prelude::*;
use speedy::{Readable, Writable};
#[derive(PartialEq, Debug, Readable, Writable)]
pub struct City {
name: String,
lnglat: (u32, u32),
}
impl FromMdbx for City {
fn from_mdbx(_: PtrTx, val: MDBX_val) -> Self {
Self::read_from_buffer(val_bytes!(val)).unwrap()
}
}
impl ToAsRef<City, Vec<u8>> for City {
fn to_as_ref(&self) -> Vec<u8> {
self.write_to_vec().unwrap()
}
}
env_rw!(MDBX, {
let mut db_path = std::env::current_exe().unwrap();
db_path.set_extension("mdb");
db_path.into()
});
mdbx! {
MDBX
Test
key u16
val City
}
fn main() -> Result<()> {
let city = City {
name: "BeiJing".into(),
lnglat: (11640, 3990),
};
let tx = w!();
let test = tx | Test;
test.set(1, city)?;
println!("{:?}", test.get(1)?);
Ok(())
}
extern crate proc_macro;
extern crate syn;
#[macro_use]
extern crate quote;
use proc_macro::TokenStream;
#[proc_macro_derive(MdbxSpeedy)]
pub fn mdbx_speedy(ts: TokenStream) -> TokenStream {
let ast: syn::DeriveInput = syn::parse(ts).unwrap();
let name = &ast.ident;
quote! {
impl mdbx::prelude::FromMdbx for #name {
fn from_mdbx(_: mdbx::prelude::PtrTx, val: mdbx::prelude::MDBX_val) -> Self {
Self::read_from_buffer(val_bytes!(val)).unwrap()
}
}
impl mdbx::prelude::ToAsRef<#name, Vec<u8>> for #name {
fn to_as_ref(&self) -> Vec<u8> {
self.write_to_vec().unwrap()
}
}
}
.into()
}
use anyhow::Result;
use mdbx::prelude::*;
use mdbx_speedy::MdbxSpeedy;
use speedy::{Readable, Writable};
#[derive(PartialEq, Debug, Readable, Writable, MdbxSpeedy)]
pub struct City {
name: String,
lnglat: (u32, u32),
}
Bineînțeles că este totuși enervant să scrii #[derive(PartialEq, Debug, Readable, Writable, MdbxSpeedy)]
în mod repetat, așa că poți folosi derive_alias
pentru a simplifica și mai mult codul.
Notă privind utilizarea
Lungimea cheii
- Minim 0, maxim ≈ ½ dimensiunea paginii (implicit dimensiunea maximă a cheii de pagină 4K este de 2022 octeți), setată la inițializarea bazei de date
pagesize
poate fi configurată la maximum65536
și trebuie să fie o putere de 2.
Note de subsol
Aceștia menționează beneficiile tranziției de la LMDB la MDBX.
Erigon a început cu o bază de date BoltDB, apoi a adăugat suport pentru BadgerDB și, în cele din urmă, a migrat complet la LMDB. la un moment dat, am întâmpinat probleme de stabilitate cauzate de utilizarea LMDB, probleme care nu au fost anticipate de creatori. De atunci, am analizat un derivat bine susținut al LMDB numit MDBX și sperăm să folosim îmbunătățirile aduse de acesta în ceea ce privește stabilitatea și, eventual, să colaborăm mai mult în viitor. integrarea MDBX este acum completă și este timpul pentru mai multe teste și documentație.
Avantajele tranziției de la LMDB la MDBX.
Creșterea "spațiului (geometriei)" de creștere a fișierelor din baza de date funcționează corect. Acest lucru este important, în special în Windows. În LMDB trebuie specificată o dată în avans dimensiunea hărții de memorie (în prezent folosim 2Tb în mod implicit) și dacă fișierul de bază de date crește peste această limită, procesul trebuie repornit. Pe Windows, dacă setați dimensiunea hărții de memorie la 2Tb, fișierul bazei de date va fi de 2Tb, ceea ce nu este foarte convenabil. În MDBX, dimensiunea hărții de memorie este mărită în trepte de 2Gb. Acest lucru înseamnă o repliere ocazională, dar are ca rezultat o experiență mai bună pentru utilizator.
MDBX are verificări mai stricte privind utilizarea simultană a procesării tranzacțiilor și suprapunerea tranzacțiilor de citire și scriere în același fir de execuție. Acest lucru ne permite să identificăm unele erori care nu sunt evidente și face comportamentul mai previzibil.
În mai bine de 5 ani (de când a fost separat de LMDB), MDBX a acumulat un număr mare de remedieri de securitate și remedieri de heisenbug-uri care, după cunoștințele noastre, încă există în LMDB. Unele dintre acestea au fost descoperite în timpul testelor noastre, iar administratorii MDBX le-au luat în serios și le-au rezolvat cu promptitudine.În cazul bazelor de date care modifică în mod constant datele, acestea creează o cantitate destul de mare de spațiu recuperabil (cunoscut și sub numele de "freelist" în terminologia LMDB). Am fost nevoiți să modificăm LMDB pentru a remedia cele mai grave deficiențe în gestionarea spațiului recuperabil (analiză). MDBX a acordat o atenție deosebită gestionării eficiente a spațiului recuperabil și, până în prezent, nu a fost nevoie să fie modificat.
Pe baza testelor noastre, MDBX a avut o performanță ușor mai bună în sarcinile noastre de lucru.
MDBX expune mai multe date de telemetrie internă - mai mulți parametri despre ceea ce se întâmplă în interiorul bazei de date. Și avem aceste date în Grafana - pentru a lua decizii mai bune în ceea ce privește proiectarea aplicațiilor. De exemplu, după tranziția completă la MDBX (eliminând suportul pentru LMDB), vom implementa o politică de "comitere a tranzacției pe jumătate plină" pentru a evita contactele pe disc de tip overflow/unoverflow. Acest lucru va simplifica și mai mult codul nostru fără a afecta performanța.
MDBX suportă modul "Exclusiv deschis" - folosim acest mod pentru migrarea bazelor de date pentru a împiedica orice alt cititor să acceseze baza de date în timpul procesului de migrare.